Q	Questi on		Answer/Indicative content	Marks	Guidance
1			С	1	
			Total	1	
2			A	1	
			Total	1	
3			С	1	
			Total	1	
4			A	1	
			Total	1	
5			c)	1	Examiner's Comments The first question requiring a calculation proved challenging. Only a quarter of candidates worked out that a haploid number of 8 would give 2 ⁸ different gametic possibilities.
			Total	1	
6			В√	1 (AO1.2)	Examiner's Comments Most responses were correct. The most common misconception was that antibiotic resistance is an example of genetic drift.
			Total	1	
7			Β√	1	Examiner's Comments The differences between continuous and discontinuous variation can be difficult to spot for lower ability candidates. However, many candidates selected the correct response, B.
			Total	1	
8			C √	1 (AO2.1)	

Mark scheme - Patterns of Inheritance

		Total	0	
9		C√	1 (AO1.2)	Examiner's Comments Many candidates got the correct answer (C), suggesting that some candidates think that artificial selection causes mutations.
		Total	0	
1 0		D√	1 (AO2.4)	Examiner's Comments Candidates appeared not to have been put off by the erratum notice and many candidates were able to carry out the calculation correctly and achieve the mark. Many showed their working on the paper.
		Total	0	
1 1		В√	1(AO2.4)	
		Total	1	
1 2		A√	1 AO2.2	
		Total	1	
1 3		no sexual reproduction (1) no / little, genetic variation (1) <i>idea of</i> susceptible to new diseases (1) <i>idea of</i> susceptible to changing environment (1)	3	ALLOW idea of limited gene pool
		Total	3	
1 4	i	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. In summary: Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.) Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best describes the overall quality of the answer. Then, award the higher or lower mark within the level, according to the Communication	6 AO1.1 AO1.2 AO2.5	 Indicative points include AO1.1 Demonstrate knowledge and understanding of scientific ideas genetic variation is the variety of alleles offspring have alleles from more than one parent random fertilisation meiosis produces genetically unique gametes

	Statement (shown in italics):		 crossing over in prophase 1 alleles swapped between non-sister chromatids
	Communication Statement has been met.		 base sequence of chromosomes altered
	 award the lower mark where aspects of the Communication Statement have been missed. The science content determines the level. The Communication Statement determines the mark within a level. Level 3 (5–6 marks) Explains in detail how sexual reproduction leads to genetic variation with reference to more than one stage of meiosis and with reference to Hydra. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. 		 independent assortment / random segregation in metaphase 1 also relevant in metaphase 2 if crossing over has occurred AO2.5 Apply knowledge and understanding of scientific processes in a theoretical context when handling qualitative data the sperm from one Hydra can fertilise an egg from any other individual Hydra the two Hydra can have different alleles sperm carried in water might travel large distances to unrelated Hydra
	Level 2 (3–4 marks) Explains in some detail how sexual reproduction leads to genetic variation with reference to more than one stage of meiosis OR with reference to Hydra and one stage of meiosis.		
	There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.		
	Level 1 (1–2 marks) Mentions more than one reason why sexual reproduction leads to genetic variation.		
	The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear.		
	0 marks No response or no response worthy of credit.		
ii	(some offspring) might survive unfavourable conditions √	1 max AO2.1	IGNORE eggs can lie dormant as stated in question

			(some) offspr (named) unfa offspring migl	ing h voura	ave u able e (if a	useful a conditic sexual)	ulleles √ ons mea	/ an (all)		IGNORE less susceptible to unfavourable conditions
			Total						7	
1 5	a	i	parental genotypes TtDd TtDd (1) gametes TD, Td, tD, td, (TD, Td, tD, td) (1) offspring genotypes TTDD TtDD TTDd TtDd TtDd Ttdd ttDD ttDd ttdd (1) offspring phenotypes curly / pink curly / black straight / pink straight / black (1) phenotype ratio 9:3:3:1 (1)				l) (1) FTdd T	Ftdd ttDD	5	 ALLOW alternative letters only if clear key given. Mark each line independently but offspring phenotypes must be correctly linked to genotype. ALLOW phenotypes and genotypes in Punnett squares.
		ii	higher propor OR alleles not co	tion, mple	hete tely r	rozygou re-mixe	us / like d / AW	parents	1	DO NOT ALLOW genes.
	b	i	Phenotype O E $O - E$ $(O - E)^2$ $(O - E)^2$ E curly pink 20 26 6 36 1.38 curly black 30 26 4 16 0.62 straight pink 21 26 5 25 0.96 straight black 33 26 7 49 1.88 $\chi^2 = 4.84$ (1)				(0 - E) ² 36 16 25 49 √	$(O - E)^2$ E 1.38 0.62 0.96 1.88 \checkmark	1	Correct answer with no working shown = 3 marks. ALLOW correct answer in the working if the answer line is left blank. If $O - E$ incorrect, allow ecf for $(O - E)^2$ line only If $(O - E)^2$ incorrect, allow ecf for $(O - E)^2$ line only ALLOW not significant. IGNORE 'farmer wrong', 'due to chance'.
			Total						10	result.

				Male	Female		
			Parental genotypes	X ^{Cr} X ^{Cbl}	X ^{Cbr} Y	1	
1			Gametes	X ^{Cr} X ^{Cbl}	XCpL A		
6	а		F1 genotype	X ^{Cr} X ^{Cbr} X ^{Cr} Y	$X^{Cbr} X^{Cbl} X^{Cbl} Y$	4	One mark for each parental genotype
			F1 Phenotype	1red : 1 red : male female	1brown : 1blue male female		ALLOW ecf
	b	i	1.6 √√			2	Two marks for correct answerIf answer incorrect allow one mark forcorrect completion of table $(O-E)^2$ 4040 $(O-E)^2$ 40080
		ij	there is no si	ignificant differenc	e between the	1	ALLOW the observed results are similar to the expected
		11	expected an	d observed results	;√		ALLOW ecf if value of chi-squared is calculated incorrectly
		ii i	random fertil	isation \checkmark		1	DO NOT ALLOW random mating
	с	i	value would	rise to infinity \checkmark		1	
		ii	<i>idea of:</i> they were no involved√	t monogamous / a	another bird was	1	
			in female off comes from	spring the allele fo male parent√	r feather colour		
		ii i	original male feathers√	bird did not hold a	allele for brown	Max 2	
			brown feathe produce brow	er allele in female wn female offsprin	would not g√		
			Total			12	
1 7		i	YR, Yr, yR, y	/r]		1	ALLOW ry, Ry, RY, rY Examiner's Comments Almost two thirds of candidates got the mark.
		ii	genotypes YyRr, Yyrr, y phenotypes	yRr, yyrr Ì		2	ALLOW YRyr, Yryr, yRyr, yryr phenotypes must correspond to

			yellow round, yellow wrinkled, green round, green wrinkled 〕		correct genotype DO NOT CREDIT if no or incorrect genotypes are given Examiner's Comments Just over half of candidates got full marks but many displayed the results of a dihybrid cross between two parents that were heterozygous for both characteristics – candidates are reminded of the need to read the question carefully. Without the correct genotypes, credit could not be given for any stated phenotypes. A surprising number of responses did not conform to convention, for example writing 'YRyr' instead of 'YyRr'. In the current series this approach did not result in lost marks but candidates are advised to follow convention in future.
			Total	3	
1 8	a	i	<i>idea</i> of greater susceptibility to, infection / pathogens √ no / fewer, plasma cells / effector cells / antibodies √	2	e.g. immune deficiency/ slower immune response/weakened immune system / longer time to recover from infection IGNORE ref to illness / disease / immunological memory ALLOW 'fewer lymphocytes to produce antibodies' Examiner's Comments This question was generally well answered, with the majority of candidates achieving 1 or 2 marks. Some candidates were not credited a mark for using the term 'illness' or 'disease' rather than referring to an increased risk of infection or susceptibility to pathogens. Fewer candidates were credited the second mark point, but for those that were, the majority stated 'less plasma cells' or 'less antibodies'. Some candidates missed out on this mark by stating what they knew about B cells, but not answering the actual question. For example, only saying 'fewer B

				lymphocytes are present' or that 'B cells make antibodies', rather than there being fewer B cells making fewer antibodies. There was a misconception amongst a few candidates that B lymphocytes were involved in phagocytosis.
	ii	(allele is) recessive (because) √ healthy parents produce children with the disease √ 2 / 5 / 2 and 5 / mothers , heterozygous / carrier √ (likely to be) sex-linked / described √ (because) on the X chromosome / X linked √ only males have the disease/no females have the disease/AW √	4 max	ALLOW '3 has the disease, but 1and 2 / parents, do not ' ALLOW '7, or / and, 8, has the disease, but, 5 and 6 /parents, do not' ALLOW 'allele found on the sex chromosomes' <u>Examiner's Comments</u> Again, a well answered question with plenty of opportunities to pick up marks. The majority of candidates were credited 3 or 4 marks here. Most were able to identify that the allele was recessive, sex linked and located on the X chromosome. Marks were lost when candidates misunderstood the reasoning behind only males being affected, and linking this to the Y chromosome. Some candidates gave imprecise answers which did not gain credit e.g. '2 and 5 were carriers' or saying 'males are more likely to have the disease'.
b	i	syndrome 1 or 2 and carriers 3 √	1	DO NOT ALLOW 1.5 IGNORE 25% probability of a child having the syndrome and 50% probability of being a carrier.
	ii	0.25 / 25% / ¼ / 1 in 4 √	1	IGNORE 25 without % IGNORE 1:3

				 Probability of each genotype in couple Z's offspring: VV = 0.25, Vv = 0.5, vv = 0.25. Probability that mother is VV and child is vv = 0 x 0.25 = 0 Probability that mother is Vv and child is vv = 0.25 x 0.5 = 0.125 Probability that mother is vv and child is vv = 0.5 x 0.25 = 0.125 0.125 + 0.125 = 0.25
				The calculations in Q4(b) were challenging. Generally, Q4 (b) (i) was well answered, with most errors occurring because of 1.5 children being produced, rather than the answer being rounded to either 1 or 2 children. Q4(b)(ii) was designed as a stretch and challenge question, but most candidates attempted to produce an answer and many successfully gave the correct answer of 25%.
		Total	8	
19	i	aaBB √ AAbb √ white / no pigment √	2	ALLOW BBaa / aBaB ALLOW bbAA /AbAb DO NOT ALLOW colourless Examiner's Comments The majority of candidates gained at least one mark for this question, with a high proportion gaining 2 or 3 marks. Where marks were not credited it was often for candidates selecting one copy of each allele instead of two
	ii	(dominant) epistasis √	1	(AB,ab) or for giving the heterozygous genotypes (AaBb , Aabb). DO NOT ALLOW recessive epistasis DO NOT ALLOW complementary

					epistasis ALLOW antagonistic epistasis Examiner's Comments The majority of candidates correctly identified the type of gene interaction as epistasis, though co dominance was a common incorrect term seen. A few candidates gave recessive epistasis as the answer which was not credited.
		ii i	B, produces / codes for, repressor protein / repressor polypeptide / enzyme / transcription factor \checkmark (protein / polypeptide / product of B) binds to, promoter (of A) / mRNA / ribosome \checkmark (product of allele B) stops, transcription / translation (of allele A) / protein synthesis / described \checkmark product of B inhibits the enzyme (encoded by A) \checkmark	2 max	IGNORE ref to genes instead of alleles IGNORE B is a regulatory gene IGNORE binds to operator IGNORE 'allele B turns off allele A' ALLOW 'product of allele B stops production of (named) product of allele A' DO NOT ALLOW 'B produces an enzyme which breaks down pigment produced by A'(as this is happening after expression of allele A) Examiner's Comments This question proved to be a good discriminator. Many candidates talked about 'allele B turning off allele A', rather than 'allele B producing a product that prevented the expression of allele A', and so did not gain credit. A few candidates mentioned allele B coding for repressor proteins or transcription factors which can bind to promoter regions and prevent transcription of allele A.
			Total	6	
2 0	а	i	(bird) females have two different (sex) chromosomes / AW ora	1(AO2.1)	ALLOW human females are homozygous IGNORE male mammals have X and Y chromosomes

					DO NOT CREDIT chromosomes described as , alleles / genes
		ïi	Parents' phenotypered maleblue bluefemaleGametes Z^A , Z^b Z^B , W \checkmark Offspring genotypes Z^AZ^B , Z^BZ^b , Z^AW , Z^b \checkmark Offspring phenotypes red male, blue male, red female, brown female \checkmark	4(AO2.1)	ALLOW ECF if no sexes given for mp1 or mp4 but colours correct Examiner's Comments Most candidates could do the genetic cross successfully, but few appreciated that the sex of the individual birds, i.e., male or female, was an important part of the description of the phenotype. Many candidates get 3 marks because they don't include the sex as part of the phenotype so the first marking point cannot be given but the final one can.
	b		(hypophosphatemic rickets allele is) dominant ✓ because occurs in daughter of an affected father ✓ on X chromosome / not on Y chromosome , because , it occurs in females (and males) / affected fathers always pass to daughters √	2 max(AO3 .1)	ALLOW it / gene , is dominant <u>Examiner's Comments</u> This question was challenging but differentiated well between candidates. Only a minority of candidates gained marks – usually for stating that the allele in question was dominant or that it was carried on the X-chromosome with a supporting statement. Most responses either attempted to describe the results, rather than drawing a conclusion from them, or assumed the allele was recessive and attempted to find evidence to support that assumption.
			Total	7	
2		i	8.73 or 8.8))) O E (O-E)² / E 58 63 0.40 25/63 31 21 4.76 100/21 21 21 21 0 0 2 7 3.57 25/7	3	ALLOW correct answers up to 4 s.f. ALLOW 2 marks any answer between 8.73 and 8.8 <i>If answer is incorrect</i> ALLOW 1 mark for correct expected numbers: 63, 21, 21, 7 ALLOW 1 mark for correctly calculated (O-E) ² /E numbers: 0.40, 4.76, 0, 3.57

			OR ALLOW 2 marks for 636 to 638 (ECF from incorrect expected numbers – 9, 3, 3, 1) Examiner's Comments Around half of candidates got full marks, but it was hard to give credit for incorrect answers if no working was given. Many candidates made good use of the grid provided. A significant minority of candidates used 9, 3, 3, 1 as the expected numbers but were still able to access two of the three marks. Candidates should be aware answers given to an inappropriate number of significant figures are unlikely to attract full marks.
11	supports because 1 (critical / table, value =) 7.82] 2 difference is significant as (X ²), higher than, 7.82 / critical value] 3 (less than) 5% / 1 in 20, probability / chance, that difference is due to chance] ora 4 X ² / calculated value is, smaller than, 9.35 / value at p =0.025] 5 greater than, 2.5% / 1 in 40, probability that difference is due to chance] ora	3 max	ALLOW correct interpretation of significance of incorrect X ² value in part (i) If candidate has miscalculated degrees of freedom CREDIT only mps 2 and 3 IGNORE reject null hypothesis 1 ALLOW 7.82 highlighted in table 2 ALLOW difference is not significant as (selected number) less than (selected) critical value 3 ALLOW > 5% chance that difference is due to chance (if consistent with candidate's X ² and critical value) 4 ACCEPT X ² / calculated value is, close to critical value / 7.82 / value at p=0.05 4 ACCEPT X ² / calculated value, <, 11.34 / value at $p=0.01$ 5 ACCEPT X ² / calculated value, <, 11.34 / value at $p=0.01$ 5 ACCEPT > 1% probability that difference is due to chance Examiner's Comments This question differentiated well and candidates who had incorrectly calculated the chi squared value in part (i) were not penalised here. Many candidates gained one mark, invariably for identifying the correct critical value at 3 degrees of freedom. Those who chose the wrong critical

				value were still able to access two of the three available marks. A reasonable minority of candidates gained a mark for correctly stating the relationship between their calculated chi squared value and their chosen critical value in terms of significant difference. Candidates who simply stated 'the results are significant' were not awarded marking point 2. The command word 'discuss' ought to have encouraged candidates to address the implication of the chi squared test in terms of the numerical probability that any difference observed was due to chance but most did not attempt this and only a few
	ii i	1 (autosomal) linkage] 2 (both) genes / alleles, occur on same, chromosome / autosome / chromatid] 3 no independent assortment] 4 (so) <u>alleles</u> , inherited together / end up in same <u>gamete</u>] 5 (unless) crossing over occurs / chiasma forms between gene loci]	3 max	 were credited with a mark for it. 1 IGNORE sex linkage / mutations 1 ALLOW idea of lethal genes 1 ALLOW genetic drift if number of individuals is small (in suggestion or explanation) 5 ALLOW if the genes are close together there is less chance of crossing over Examiner's Comments This question also differentiated well between candidates of differing ability. Around a third of candidates recognised linkage and most of these went on to achieve two or three marks. Many candidates cited mutations or random fertilization as a possible explanation, with no credit.
		Total	9	
2 2	i	$\begin{array}{c c} \mbox{phenotype} \\ \mbox{s} \end{array} \begin{array}{c c} \mbox{observe} \\ \mbox{d} \\ \mbox{number} \\ \mbox{(O)} \end{array} \begin{array}{c c} \mbox{expecte} \\ \mbox{d} \\ \mbox{number} \\ \mbox{(E)} \end{array} \begin{array}{c c} \mbox{O-} \\ \mbox{O-} \\ \mbox{E} \\ \mbox{E} \end{array} \begin{array}{c c} \mbox{O-} \\ \mbox{E} \\ \mbox{E} \end{array} \end{array} \begin{array}{c c} \mbox{O-} \\ \mbox{E} \\ \mbox{E} \end{array} \begin{array}{c c} \mbox{O-} \\ \mbox{E} \end{array} \begin{array}{c c} \mbox{O-} \\ \mbox{E} \\ \mbox{E} \end{array} \end{array} \begin{array}{c c} \mbox{O-} \\ \mbox{E} \end{array} \begin{array}{c c} \mbox{O-} \\ \mbox{E} \end{array} \begin{array}{c c} \mbox{O-} \\ \mbox{E} \end{array} \end{array} \begin{array}{c c} \mbox{O-} \\ \mbox{E} \end{array} \begin{array}{c c} \mbox{O-} \\ \mbox{E} \end{array} \end{array} $	2(AO2.6)	IGNORE decimal places

		healthy female healthy male haemophil ia male	5 3 1 √	$\begin{array}{c} 4.5 \\ 2.25 \\ 2.25 \\ 2.25 \\ 1.2 \\ 5 \\ \hline \end{array}$	$\begin{array}{c} 0.2 \\ 5 \\ 7 \\ 0.5 \\ 6 \\ 2 \\ 1.5 \\ 6 \\ 1.5 \\ 6 \\ 1.5 \\ 1.5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $).05 6).24 9).69 3).99 8		Around half of candidates achieved full marks. Very few scored 1 mark. ALLOW number circled or otherwise
	ii	5.991 √					1(AO2.2)	indicated in table <u>Examiner's Comments</u> Very few candidates could select a critical value from a statistical table.
	ii i	student is inc calculated , r greater than difference is <i>idea that</i> stat √	correct bec number be , 5% / 109 due to cha istical test	cause , chi-s low critical \ 6 , probabilit ance √ s only gives	quared alue √ y that an a proba	/ ability	2 max(AO3 .2)	ALLOW no significant difference between observed and expected ALLOW numbers too low to be confident about conclusion Examiner's Comments Around half of candidates achieved 1 mark in this challenging question about interpreting the results of a statistical test. Most appreciated that a calculated value below the critical value meant the student was incorrect and the null hypothesis ought to be accepted but few could use the idea of probability to discuss this further.
		Total					5	
2 3		Feature Circum- ference (mm)	Cause of feature environ- ment and genes / genetics	Number of genes involved many / several / poly- genic / AW	Type grapl used prese data line grapl	of h to nt a	3	One mark per correct column ALLOW histogram instead of line graph

		Containing seeds or seedless Total <i>two from</i>	genes / genetics (1)	one / two (1)	bar chart / graph (1)		3	
2 4	i	babies / infar elderly / infirr immuno-com drugs / HIV p known to hav (1)	nts (1) n (1) promised / positive (1) ve been exp	on immunos osed (to the	suppressa e infection)	nt)	2	
	ï	two from (antibiotic is) (bacterial) ge (only) some to bacteria are in two from when expose survive (1) surviving bac make a resist idea that ove increase in p (under contin antibiotic bec needed (1)	selective pro- ene pool / Al pacteria hav more resistant ed (to antibio eteria contin tant populat r many gen roportion of nued antibio comes ineffe	essure (1) W, has varia re resistance ant than othe otic) most-re ue to reproce ion (1) erations the resistant ba tic pressure ective / new	ation (1) e / some ers (1) esistant duce to ere is an acteria) (1) antibiotic		4	IGNORE increase in number of resistant bacteria.
		Total					6	
2 5		* Level 3 (7– Extensive ref) historical cir Inferences has natural select Learner dem Darwinian the reaching reas how the diffe occurred. There is a we which is cleat information p substantiated Level 2 (4–6 Reference has historical circ	•9 marks) ference has rcumstance ave been clu- tion. onstrates a eory and the soned conc rent phenot ell-develope r and logica presented is d. marks) as been ma cumstances	been made s of both po early drawn holistic gras e informatio lusions that ypic frequen d line of rea lly structure relevant an de to the (p of both pop	e to the (pr opulations. in terms of sp of the n given; explain ncies asoning ed. The od	e-	9	 Indicative scientific principles may include: Europeans: (pre-agricultural) gene pool / genetic variation, included mutant / non-intolerance, allele availability of milk acted as (positive) selection pressure individuals / groups, with mutant / non-intolerance, allele had better, chance of survival / success in reproduction directional selection

	Some inferences have been drawn in terms of natural selection. There is partial structuring of the ideas with the connections between Darwinian theory and information generally clear. Conclusions are used to explain how the different phenotypic frequencies occurred. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.		 mutant / non-intolerance, allele accumulated (in gene pool) genetic drift (in small prehistoric population) mutant / non-intolerance, allele is dominant so expressed in heterozygotic individuals (increasing phenotype frequency).
	 Level 1 (1–3 marks) Reference has been made to the (pre-) historical circumstances of at least one of the populations. At least one inference has been stated in terms of natural selection. The ideas expressed are poorly structured but some relevant points are made. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. O marks No response or no response worthy of credit. 		 Australian aborigines: ancestral population preagricultural so no selection for mutant / non-intolerance, allele no suitable mammals to domesticate / milk island, so no borders for suitable mammals to come in no contact / breeding, with non-Aboriginal peoples no gene flow (from other human populations) no selection pressure to increase mutant / non-intolerance, allele / phenotype, frequency.
	Total	9	
2 6	adapted to occupy the (oil spill) , <u>niche</u> / <u>environment</u> √ outcompete other , bacteria / species √ oil is acting as <u>selective agent</u> / <u>selection</u> of bacteria that were able to digest oil √	1 max (AO2.5)	Examiner's Comments This was also a challenging contextual question for candidates to achieve a mark in as responses had to offer something not already included in the question. Many candidates did not appreciate from the context that there would not always be oil present in the area, merely that oil spills happened with some regularity, hence answers like 'they can gain nutrition from the

				oil' were not credited without further explanation.
		Total	1	
2 7	i	genetic polymorphism / proportion of heterozygotes / proportion of gene variants √	1 (AO1.1)	CREDIT number of polymorphic genes Examiner's Comments Less than 1 in 4 responses achieved this relatively straightforward AO1 mark Some candidates appeared to miss the significance of 'genetic' and suggested various sampling techniques or Simpson's index of diversity. Others appeared to attach little significance to 'diversity' and described DNA sequencing techniques or the Hardy-Weinberg principle.
		(many) <u>alleles</u> lost (when population dropped) ✓ ora (modern population) descended from few survivors / AW ✓	2 (AO2.5)	ALLOW few alleles were left after drop in population ALLOW cheetahs still alive descended from a small gene pool IGNORE founder effect unqualified Examiner's Comments This was a relatively low scoring question. Most responses did not address the question that was asked but rather attempted to explain what a genetic bottleneck was or to discuss the consequences of low genetic diversity. Those candidates that did address the question usually achieved 1 mark, often for referencing the loss of alleles when the population crashed. However, some such responses did not achieve this mark because of imprecise references to reductions in allele frequency, rather than number of alleles or because of conflation of 'genes' with 'alleles'. Fewer candidates discussed the idea that the modern population were all descended from the diminished original. Some responses hinted that candidates thought the genetic bottleneck had occurred within the last

		ii i	<i>idea that</i> one individual or allele has proportionally higher effect on small population ✓ (more likely that) <u>alleles</u> will be lost from population ✓ (population) more vulnerable / likely to become extinct due , to environmental change / AW ✓	2 max (AO1.2)	(new) disease IGNORE event Examiner's Comments Genetic drift seems to be poorly understood on the part of candidates. Many responses appeared to confuse genetic drift with speciation or inbreeding depression; others discussed the decreased likelihood of meeting another cheetah. Around a quarter of responses achieved 1 mark and very few scored both. Some of the candidates that appeared to know what genetic drift was went no further than stating that genetic drift affects small populations, which added little or nothing to the information given in the question.
			Total	5	
2 8	а	i	-1.8 √	1(AO2.2)	The minus sign is required for the mark.
		ii	FIRST CHECK ON ANSWER LINE If answer = 0.24 award 2 marks	2(AO2.2)	If answer incorrect ALLOW max 1 mark for 0.2 / correct answer to >2 s.f. / 24% Examiner's Comments This was the most challenging calculation question with fewer than

ii	<pre>supports because 1 two peaks √ 2 (at) 0 and , 1.2 / 1.4 √ does not support because 3 second / AW , peak is not much higher than background √ 4 second / AW , peak represents a small number of birds √ 5 idea that there could be other explanations for more birds between 1.2 and 1.4 (a.u.) √ OR if marking points 3, 4 or 5 have not been awarded does not support because 6 there is only one peak √ 7 idea that more likely directional selection as</pre>	3 max(AO3 .1 3.2)	1 ALLOW not a normal distribution Examiner's Comments This was a challenging question in which candidates were required to apply their knowledge of the expected shape of a disruptive selection graph to some real data about finches. Real data rarely matches the textbook ideal and most candidates struggled to perceive two peaks in the graph they were presented with. It was rare to award more than one mark and those candidates that did achieve the mark tended to do so for challenging the scientists' conclusion and describing the graph as having only one peak. Few candidates attempted to consider reasons why the conclusion might be
b	 Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Explains how genetic variation, differential survival and the passing on of alleles to the next generation act to increase the proportion of the population with a beak length of around 11mm and makes appropriate use of the graph data to support explanation. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Explains how natural selection acts to increase the proportion of the population with a beak length of around 11mm. There is a line of reasoning presented with some structure. The information presented is relevant and substantiated. 	6(AO2.5 3.2)	Indicative points may include AO2.5 Genetic variation pre-existing sexual reproduction meiosis mutation Differential survival overproduction of offspring finches with extreme beak depth less likely to survive reason for birds with very small or large beaks not surviving Inheritance

			Explains how natural selection favours those in the population with an average phenotype OR that natural selection favours finches with a beak length of around 11 mm. <i>There is an attempt at a logical structure with a</i> <i>line of reasoning. The information is in the most</i> <i>part relevant.</i>		 alleles for average beak depth more likely to be inherited by offspring increase frequency of these alleles from one generation to the next
			0 marks No response or no response worthy of credit.		 AO3.2 Use of figures from graph bell-shaped curve skewed to right beak depth with peak survival is 11.2 mm no birds survived with beaks of 7.4 mm or less no birds survived with beaks of 11.6 mm or more Examiner's Comments The majority of the candidates were able to use the data in the graph correctly and they were able to outline that birds with very small or very large beaks did not survive whereas those with average beak sizes did. Most of the candidates had to explain the process in more detail, by including details about the importance of genetic variation or inheritance of alleles for average beak size. Many candidates successfully referred to the graph within their answers and so were able to access the higher levels. A few candidates did not seem to appreciate the fact that extremely large beak sizes were being selected against as well as extremely small ones. There was a small but significant number of candidates that discussed the data in the graph as if the x-axis represented
			Total	12	time, rather than beak size.
2 9	a	i	4.7 √√	2 (AO2.6)	<i>Max 1 if answer not given to 2 s.f.</i> IGNORE sign

			If answer incorrect ALLOW 1 mark for 4.8 or 4.9 Examiner's Comments Most candidates scored on this question, either getting the full 2 marks for 4.7 or getting one mark for 4.8 or 4.9 as a result of dividing by the female length rather than the male. The majority of candidates answered to 2 significant figures as instructed.
	little / nothing (can be concluded) √ because no (named) statistical test done √	2 max (AO3.1)	IGNORE 'not significant' <i>If no other marks awarded</i> , ALLOW 1 <i>mark only for</i> (probably) not significant because , <u>error</u> bars / standard deviations , overlap <u>Examiner's Comments</u> Less than 1% of candidates gave the full correct answer, i.e. that, without performing a statistical test, nothing can be concluded. However, around a third of responses gained 1 mark by stating that the difference was probably not significant because the error bars overlapped. Although not strictly true, this approach is obviously being taught by centres. Many responses included phrases like 'low significance' or 'not very significant'. These largely meaningless terms gained no credit. Candidates are advised to stick with the absolute term: the difference is or is not significant. A number of candidates confused the percentage difference in height (4.7%) with the 5% probability used to determine significance and gained no marks.
ii	No, because… idea that standard deviation is not the same as range √	1 (AO3.2)	ALLOW e.g. SD does not include all outliers / error bars don't show range

				Examiner's Comments Around half of responses stated, correctly, that the information did not support the candidate's answer and a majority of these gained a mark. A minority, however, believed that the reason the candidate's answer was not supported was that the mean length was that of the longest cheetah. The other half of responses incorrectly stated that the information did support the candidate's answer, usually because they interpreted the error bars as range bars.
	i v	environment √ genes / genetic / alleles , and environment √ <u>many</u> genes / polygenic √ age √	2 max (AO2.1)	ALLOW suitable example, e.g. diet Note 'genes and environment' = 2 marks IGNORE refs to mutation Examiner's Comments About half of responses achieved 2 marks. However, many wrote unnecessarily long explanations. The command word 'state' ought to have directed candidates to answer quickly with short, direct, statements. On this occasion a three-word answer 'genes and environment' easily achieved both marks. Many candidates missed the significance of the context of the question, i.e. that body length displays continuous variation and that any contribution from genes is likely to be minimal in the relatively genetically homogenous cheetah population; hence, answers that focussed on genetic variation alone achieved no credit. Responses that did not answer the question, such as lengthy discussions of the potential advantage of longer body length in males, received no credit.
b	i		1 max (AO2.3)	Mark the first response only Assume 'it' refers to mongoose IGNORE references head / body /

	<i>Fossa has</i> longer , legs √ different (shaped / size) , ears √ (proportionally) bigger eyes √		shape ALLOW ora for mongoose throughout ALLOW longer tail / larger jaw Examiner's Comments The vast majority of candidates achieved this mark. Some were even able to correctly refer to proportional sizes. Those few responses that did not gain a mark tended to refer to differences not visible in the figure or vague differences in body shape.
ii	1 allopatric speciation √ 2 different , selection pressure / environmental conditions (from mainland) √ 3 (random) mutation √ 4 (fossa-like) individuals with , mutation / (new) feature , survive / reproduce √ ora 5 beneficial / AW , alleles passed on √ 6 directional selection	4 max (AO2.5)	3 ALLOW pre-existing genetic variation 4 IGNORE best adapted / fittest Examiner's Comments This question differentiated well between candidates of differing abilities and two marks were most commonly scored. The best responses outlined the natural selection of cat- like features using technical terms. Many responses were not credited marks because they did not use the term 'alleles' correctly. Some conflated 'alleles' with 'genes' while others merely referred to traits, characteristics or features. Answers that ignored the context completely struggled to gain full marks as generic references to selection pressures or survival of the best adapted were not credited without a link to the Madagascar/fossa-like context. A minority of responses did not address the question, which the evolution of the fossa, and devoted their entire

				1
				answer to issues of speciation, gaining
				little credit. Use of the A Level key
				term, 'directional selection', was rare.
				Exemplar 9
				Ture was an Canelows Mutados Var. a. glad, 200 using
				. 9. martin taglous. Characteritai, Mara Belechan
				Golyan by george Character Still Strained
				and placed its aquarkageous characteristics on the
				the next generation over the one alle Pequency
				. for man charmen and a speed speed to
				This response ignores the context of
				the question and simply discusses
				natural selection in generic terms. One
				mark has been credited for discussing
				mutations but, although the response
				alludes to marking points 2 and 4, as
				these are context-dependent, the
				marks have not been given.
				Exemplar 10
				Population i so land and under different environmental selection pressures. Gene mutations in an individual which causes mem to larger is considered an eduantage charadenstic (more faster to catter food etc). So they are more is to survive and pay on aveir to of overtime the aircle frequency cha
				so mar four are ensured
				This response achieves full marks for
				the following marking points: 2 –
				recognising the context of an
				environment different from the African
				mainland, 3, 4 – recognising the
				niche, and 5.
				IGNORE refs to isolation
				ALLOW genetically different / large
	ii	mutation / genetic diversity \checkmark	3 max	gene pool
	i		(AO1.2)	
		natural / directional , selection \checkmark		
				ALLOW e.g. different food source

		<i>idea that</i> environment / selection pressure , is <u>different</u> from the 'other' population √ time √		ALLOW many generations <u>Examiner's Comments</u> This question was poorly answered with many candidates failing to appreciate the significance of 'other' in the question and, hence, listing methods of reproductive isolation. Mutation and different environmental conditions were the most commonly seen correct answers but references to natural selection and time were rare.
		Total	15	
3 0	i	bar chart drawn AND x-axis labelled 'phenotype' AND linear y-axis scale labelled 'frequency' √ bars correct height and same width √ bars fill half the available (vertical) space √	4 AO3.3	DO NOT CREDIT stacked bars Y-axis must start at 0
		bars labelled / key AND tongue rolling and non-tongue-rolling bars do not touch √		ALLOW all 4 bars not touching
	ii	FIRST CHECK ON ANSWER LINE If answer = 0.5 or 0.49 or 0.493 or 0.494 award 3 marks $q^2 = 77/248 = 0.31 \checkmark$ $q = \sqrt{0.31} = 0.557 \checkmark$ p = 1 - 0.557 = 0.443 $2pq = 2 \times 0.443 \times 0.557 = 0.494 \checkmark$	3 AO2.4	IGNORE sig. figs for working marks If answer incorrect, ALLOW either half of working equations for 1 mark each up to a maximum of 2. ALLOW e.g. ' $q^2 = 77/248$ ' or ' $77/248 =$ 0.31'
	ii i	(population) not (sufficiently) large √ (population) not randomly mating / not subject to selection √	2 AO2.3	Mark the first answer on each prompt line ALLOW ora in context of Hardy- Weinberg assumptions ALLOW mutations might occur IGNORE immigration / emigration

			Total	9	
3 1			2 √√√	3	Max 2 marks for calculation if answer not to one significant figure $(q^2 = 1 \text{ in } 10,000 = 0.0001)$ $q = 0.01 \checkmark$ (p = 1 - 0.01 = 0.99) $2pq = 0.0198 \checkmark$ 0.02 = 2 marks 1.98 = 2 marks Examiner's Comments Most candidates failed to give the correct final result but managed to score at least one of the three marks available. A high proportion of candidates were able to correctly calculate the value of p and q but then got lost trying to substitute them into the equation. A few candidates calculated 2pq correctly but did not go on to calculate the percentage, while some others followed the calculation to the end but did not round up the result to one significant figure.
			Total	3	
3 2		i	sympatric √	1(AO1.2)	
		ii	<i>idea that</i> individuals choose to mate only with other individuals with similar sized beaks \checkmark	1(AO1.2)	CREDIT sexual selection ALLOW different , mating seasons / courtship rituals
		ii i	(DNA) found in all organisms √ some / AW , sequences highly conserved √ comparison (of DNA between species) √ similar (base) sequence indicates recent common ancestor √ ora	2(AO1.1)	ALLOW look at similarities in DNA
			Total	4	
3 3	а	i	artificial selection \checkmark	1	
		ii	suitable named plant and adaptation √	1	e.g. wheat / barley / corn / oats , large seeds

	b		wolf is the result of natural selection √ selected / evolved to survive in habitat √ no extreme features √ dogs bred by artificial selection √ dogs have extreme features √ example of extreme features √ not well adapted to survive in wild √	Max 4	ALLOW able to reproduce well in wild e.g. long body / short legs of dachshund large ears / creased face of blood hound ALLOW not able to reproduce well in wild
	с		artificial breeding / selection can exaggerate features ✓ other characteristics may be ignored ✓ (may be) detrimental to health (of dog) ✓ club provides guidance / advice to maintain welfare ✓	Max 3	
			Total	9	
				•	
3 4		i	60 (cm³) √	1 (AO2.2)	1.44 dm ³ = 1440 cm ³ 1440 / 24 = 60
3 4		i	60 (cm ³) √ inbreeding / AW, reduces genetic diversity √ (more) homozygous recessive alleles (for CPF) √ <i>idea of</i> allele for CPF linked to gene for desirable trait (so inherited together) √	1 (AO2.2) 1 max (AO 2.5)	1.44 dm ³ = 1440 cm ³ 1440 / 24 = 60 ALLOW 'inbreeding creates smaller gene pool' ALLOW 'more homozygous recessive genotypes (for CPF)' ALLOW (leads to) inbreeding depression e.g. 'CPF gene on same chromosome as (named) desirable trait '

		<i>idea of</i> linking DNA sequences to specific proteins (i.e. proteomics) √		e.g. 'can identify mutated protein from DNA sequence'
	i v	weakened / dead / inactivated, (parvo)virus √ antigens from the (parvo)virus √ mRNA to produce(parvo)virus proteins √	1 max (AO2.1)	IGNORE 'dormant form of virus' ALLOW 'attenuated form of virus' ALLOW viral coat proteins
	v	memory cells have, reduced in number / AW \checkmark	1 (AO2.5)	ALLOW to produce more memory cells (to improve immunity) DO NOT ALLOW 'no memory cells left'
		Total	6	
35		 Level 3 (5–6 marks) Provides a detailed explanation of the benefits to selective breeding of maintaining a viable wild population. The answer contains well-developed lines of reasoning which are clear and logically structured and uses scientific terminology at an appropriate level. All the information presented is broadly relevant. Level 2 (3–4 marks) Provides an explanation of the benefits to selective breeding of maintaining a viable wild population. The answer contains some reasoning, structure and use of appropriate scientific language. The information presented is mostly relevant. Level 1 (1–2 marks) Lists at least one benefit to selective breeding of maintaining a viable wild population. The information is communicated with only a little structure. Communication is hampered by the inappropriate use of technical terms or substantial irrelevant material. 0 marks No response or no response worthy of credit. 	6 (AO1.2)	Indicative points These could be described in terms of problems associated with selective breeding and solutions offered by maintaining a wild population genetic variation genetic resource / gene bank source of useful alleles can be cross bred with crop varieties allows introduction of different traits unknown future requirements potentially useful in changing climate prevention of inbreeding depression promotion of hybrid vigour prevent dwindling gene pool source of replacement if cultivated population is in danger plausible example(s) of any of the above Most candidates gave answers that indicated they had a good understanding of the problems associated with selective breeding, i.e.

			that selection of desired characteristics results in reduced genetic diversity. Most were then able to exemplify the consequences of a reduced gene pool in terms of susceptibility to the same disease. Fewer candidates were able to show that they understood that the existence of a wild variety of the same species could alleviate this problem. Only occasionally did responses
			include discussion of potential environmental changes that may happen in the future, to which the resource of alleles in the wild population of plants may provide a solution.
			It was noted by examiners that, when discussing selective breeding, many candidates displayed a fundamental misunderstanding of a lot of related biology. Commonly seen errors included: conflating genes with alleles, referring to resistance as immunity, suggesting that selective breeding caused mutations, conflating genetic diversity and biodiversity and misuse of 'species' to mean 'variety'. Such responses often meant that the upper mark within a level could not be credited and sometimes limited the level that the response was able to access.
			irrelevant material about ethics, aesthetics and medicinal drugs and were therefore unable to access the upper mark within a level.
	Total	6	